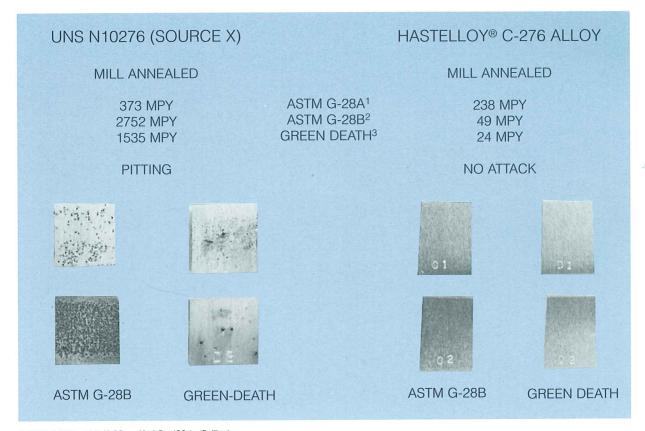
HAYNES International CORROSION-RESISTANT ALLOYS

HASTELLOY® C-276 ALLOY

Excellent corrosionresistance to both oxidizing and reducing media and excellent resistance to localized corrosion attack.

Contents


Principal Features	3
Chemical Composition	3
Physical Properties	4
Dynamic Modulus of Elasticity	4
Formability	4
Impact Strength	5
Tensile Data	5
Hardness	5
Aqueous Corrosion Data	6
Localized Corrosion Data	8
Isocorrosion Diagrams	11
Availability	15
Sales Office Addresses	16

HASTELLOY[®] : THE NAME TO TRUST

In aggressive/corrosive service, when nothing else works, many industries have traditionally turned to HASTELLOY® C-276 alloy. Many years of outstanding performance in a variety of industrial applications have confirmed the advantages of using the alloy. Materials

engineers in the chemical processing and other industries have grown accustomed to specifying its high performance based on laboratory testing, field trials and/or prior experience. Some "generic" alloy N10276 products fail to measure up to

the performance industry expects from HASTELLOY C-276 alloy which is produced via exacting processes, and backed by years of experience in chemistry control, thermalmechanical processing, testing and qualifications to rigid standards.

 1 ASTM G-28A = 50% H_2SO_4 + 42g/l Fe_2 (SO_4)_3 (Boiling) ^2 ASTM G-28B = 23% H_2SO_4 + 1.2% HCl + 1% Fe_2Cl_3 + 1% CuCl_2 (Boiling) ^3 GREEN DEATH = 11.5% H_2SO_4 + 1.2% HCl + 1% Fe_2Cl_3 + 1% CuCl_2 (Boiling)

When the alloy is specified by the UNS Number, discerning questions should be asked for assurance of HASTELLOY C-276 alloy performance:

- Does the product possess the clean, homogeneous microstructure so important for good resistance to aqueous corrosion?
- How does the product perform in tough environments (e.g., rigorous pitting conditions) for which this material is most often specified?
- Is the corrosion resistance of the welded product, in a discriminating test, up to par?

© 2001 by Haynes International, Inc.

PRINCIPAL FEATURES

Excellent Resistance to Corrosion

HASTELLOY® C-276 alloy is a nickel-molybdenum-chromium wrought alloy that is generally considered a versatile corrosionresistant alloy. C-276 alloy is an improved wrought version of alloy C in that it usually doesn't need to be solution heat-treated after welding and has vastly improved fabricability. This alloy resists the formation of grainboundary precipitates in the weld heat-affected zone, thus making it suitable for most chemical process applications in the aswelded condition. However, in environments where attack of the C-276 alloy weld joint is experienced, C-22® weld filler materials should be considered (See page 14).

C-276 alloy has excellent resistance to localized corrosion and to both oxidizing and reducing media. Because of its versatility, C-276 alloy can be used where "upset" conditions are likely to occur or in multipurpose plants.

HASTELLOY C-276 alloy has excellent resistance to a wide variety of chemical process environments, including strong

oxidizers such as ferric and cupric chlorides, hot contaminated media (organic and inorganic), chlorine, formic and acetic acids, acetic anhydride, and seawater and brine solutions. It is used in flue gas desulfurization systems because of its excellent resistance to sulfur compounds and chloride ions encountered in most scrubbers. C-276 alloy has excellent resistance to pitting and to stress-corrosion cracking. It is also one of the few materials that withstands the corrosive effects of wet chlorine gas. hypochlorite, and chlorine dioxide.

Fabricated by a Variety of Methods

HASTELLOY C-276 alloy can be forged, hot-upset, and impact extruded. Although the alloy tends to work-harden, it can be successfully deep-drawn, spun, press formed or punched. All of the common methods of welding can be used to weld HASTELLOY C-276 alloy, although the oxyacetylene process is not recommended. Special precautions should be taken to avoid excessive heat input. Detailed fabricating information is available in the booklet, <u>Fabrication of HAYNES®</u> <u>Corrosion-Resistant Alloys</u>. Ask for booklet H-2010.

Available in Wrought Form

HASTELLOY C-276 alloy is available in the form of plate, sheet, strip, billet, bar, wire, covered electrodes, pipe, tubing, pipe fittings, flanges, and fittings.

Heat-Treatment

Wrought forms of HASTELLOY C-276 alloy are furnished in the solution heat-treated condition unless otherwise specified. C-276 alloy is normally solution heattreated at 2050°F (1121°C) and rapid quenched. If possible, parts which have been hot-formed should be solution heat-treated prior to final fabrication or installation.

ASME Boiler and Pressure Vessel Code

HASTELLOY C-276 alloy plate, sheet, strip, bar, tubing, and pipe are covered by ASME specifications SB-574, SB-575, SB-619, SB-622, and SB-626 under UNS number N10276.

NOMINAL CHEMICAL COMPOSITION, (CONSISTS OF ABOUT) WEIGHT PERCENT*

Ni ^a	Со	Cr	Мо	W	Fe	Si	Mn	С	Others	
57	2.5**	16	16	4	5	0.08**	1**	0.01**	V-0.35**	

*The undiluted deposited chemical composition of alloy C-276 covered electrodes has 0.02 percent maximum carbon, 0.20 percent maximum silicon, 0.03 percent maximum phosphorus, and 0.015 percent maximum sulfur.

* * Maximum

^a= As Balance

AVERAGE PHYSICAL	PROPERTIES			
Physical Property	Temperature, °F	British Units	Temperature,°C	Metric Units
Density	72	0.321 lb./in ³	22	8.89 g/cm ³
Melting Range	2415-2500		1323-1371	
Electrical Resistivity	75	51 microhm-in.	24	1.30 microhm-m
Mean Coefficient of	75-200	6.2 microinches/in°F	24-93	11.2 x 10 [−] 6m/m•K
Thermal Expansion	75-400	6.7 microinches/in°F	24-204	12.0 x 10 [−] 6m/m•K
	75-600	7.1 microinches/in°F	24-316	12.8 x 10 ⁶ m/m•K
	75-800	7.3 microinches/in°F	24-427	13.2 x 10 ⁻⁶ m/m•K
	75-1000	7.4 microinches/in°F	24-538	13.4 x 10 [−] 6m/m•K
Thermal Conductivity	-270	50 Btu-in./ft.2-hr°F	-168	7.2 W/m•K
inonna oonaaoing				
merma conaucing	-100	60 Btu-in./ft.2-hr°F	-73	8.6 W/m•K
	-100 0	60 Btu-in./ft.²-hr°F 65 Btu-in./ft.²-hr°F	-73 -18	8.6 W/m•K 9.4 W/m•K
		a (20 in analysis		
	0	65 Btu-in./ft.2-hr°F	-18	9.4 W/m•K
	0 100	65 Btu-in./ft.²-hr°F 71 Btu-in./ft.²-hr°F	-18 38	9.4 W/m•K 10.2 W/m•K
	0 100 200	65 Btu-in./ft.²-hr°F 71 Btu-in./ft.²-hr°F 77 Btu-in./ft.²-hr°F	-18 38 93	9.4 W/m•K 10.2 W/m•K 11.1 W/m•K
	0 100 200 400	65 Btu-in./ft.²-hr°F 71 Btu-in./ft.²-hr°F 77 Btu-in./ft.²-hr°F 90 Btu-in./ft.²-hr°F	-18 38 93 204	9.4 W/m•K 10.2 W/m•K 11.1 W/m•K 13.0 W/m•K
	0 100 200 400 600	65 Btu-in./ft.²-hr°F 71 Btu-in./ft.²-hr°F 77 Btu-in./ft.²-hr°F 90 Btu-in./ft.²-hr°F 104 Btu-in./ft.²-hr°F	-18 38 93 204 316	9.4 W/m•K 10.2 W/m•K 11.1 W/m•K 13.0 W/m•K 15.0 W/m•K

AVERAGE DYNAMIC MODULUS OF ELASTICITY

Form	Condition	Test Temperatures °F (°C)	Average Dynamic Modulus of Elasticity, 10 ⁶ psi (GPa)
Plate	Heat-treated	Room	29.8 (205)
	at 2050°F	400 (204)	28.3 (195)
	(1121°C), Rapid Quenched	600 (316)	27.3 (188)
		800 (427)	26.4 (182)
		1000 (538)	25.5 (176)

FORMABILITY

		Average Olsen Cup I	Depth
Form	Condition	in.	mm
Sheet, 0.044 in. (1.1mm) thick	Heat-treated at 2050°F (1121°C), Rapid Quenched	0.48*	12.2*

*Average of six tests.

AVERAGE IMPACT STRENGTH, PLATE

	"U" Notch Im at –320°F	pact Strength (–196°C)
Condition	ftlb.	J
Solution Heat-Treated at: 2050°F (1121°C), Rapid Quenched	263*	357
Aged 100 hrs. at:		
500°F (260°C)	250	339
1000°F (538°C)	96	130
Aged 1000 hrs. at:		
1000°F (538°C)	64	87
*Five of six specimens did not break		

Cryogenic Notch Toughness

This "U" notch specimen of alloy C-276 did not break under the hammer blow of the impact tester at -320°F (-196°C).

*Five of six specimens did not break.

AVERAGE TENSILE DATA, SOLUTION HEAT-TREATED

Form	Test Temperature °F (°C)	Ultimate Tensile Strength Ksi*	Yield Strength at 0.2% offset, Ksi*	Elongation in 2 in. (50.8mm) %
Sheet 0.078 iin.	Room	114.9	51.6	61
(2.0mm) thick	400 (204)	100.6	42.0	59
	600 (316)	98.8	35.9	68
	800 (427)	94.3	32.7	67
Sheet, 0.094 in.	400 (204)	101.0	39.9	58
(2.4mm) thick	600 (316)	97.6	33.5	64
	800 (427)	93.5	29.7	64
Sheet, 0.063 to	400 (204) ¹	100.8	42.1	56
0.187 in. (1.6 to	600 (316) ²	97.0	37.7	64
4.7mm) thick	800 (427) ²	95.0	34.8	65
	1000 (538) ²	88.9	33.8	60
Plate, 3/16 to	400 (204) ³	98.9	38.2	61
1 in. (4.8 to	600 (316) ³	94.3	34.1	66
25.4mm) thick	800 (427) ³	91.5	32.7	60
	1000 (538) ³	87.2	32.8	59
Plate, 1 in.	Room	113.9	52.9	59
(25.4mm) thick	600 (316)	96.3	36.2	63
	800 (427)	94.8	30.5	61

*Ksi can be converted to MPa (megapascals) by multiplying by 6.895.

1-Average of 25 tests. 2-Average of 34-36 tests. 3-Average of 9-11 tests.

AVERAGE ROOM TEMPERATURE HARDNESS

Form	Hardness, Rockwell	
Sheet**	Rb 90	
Plate***	Rb 87	

**Average of 49 tests.

***Average of 35 tests.

COMPARATIVE AQUEOUS CORROSION DATA

	Concen- tration, percent by	Test Temp., °F (°C)	C-276 alloy	Average Corrosio C-22 [®] alloy	on Rate per year C-4 alloy	; mils* 625 alloy
Nedia	weight	In the second	<1	Nil	Nil	<1
cetic Acid	99	2011.9	2	1	140	7325
erric Chloride	10	Boiling	1	<1	2	9
Formic Acid	88	Boiling	13	3	25	1
Hydrochloric Acid	1	Boiling	32	14	64	353
	1.5	Boiling		Nil	31	Nil
	2	194 (90)	1	61	82	557
	2	Boiling	51	<1	34	72
	2.5	194 (90)	12	141	44	605
	2.5	Boiling	85	400	228	642
	10	Boiling	288	2	-	238
Hydrochloric Acid	1	200 (93)	41	2	3	2
+ 42 g/l Fe ₂ (SO ₄) ₃	5	150 (66)	5			123
Hydrochloric Acid + 2% HF	5	158 (70)	26	59	34	
Hydrofluoric Acid	2	158 (70)	9	9	17	20
	5	158 (70)	10	14	15	16
P ₂ O ₅ (Commercial	38	185 (85)	9	2	-	1
P_2O_5 (Commercian Grade)	44	240 (116)	100	21	_	23
citati)	52	240 (116)	33	11	-	12
P ₂ O ₅ + 2000 ppm Cl	38	185 (85)	12	1	_	2
P ₂ O ₅ + 0.5% HF	38	185 (85)	45	7	-	9
	10	Boiling	7	< 1	7	<1
Nitric Acid	65	Boiling	888	134	217	21
Nitric Acid +	5	140 (60)	207	67	204	73
6% HF Nitric Acid + 25% H ₂ SO ₄ + 4% NaCl	5	Boiling	64	12	97	713
Nitric Acid + 1% HCl	5	Boiling	8	<1	11	1
Nitric Acid + 2.5% HCl	5	Boiling	21	2	26	> 10,000
Nitric Acid + 15.8% HCl	8.8	126 (52)	33	4	114	> 10,000

*To convert mils per year (mpy) to mm per year, divide by 40.

COMPARATIVE AQUEOUS CORROSION DATA CONTINUED

	Concen- tration, percent by	Test Temp.,		Average Corrosi	on Rate per vez	ar. mils*
Media	weight	°F (°C)	C-276 alloy	C-22 [®] alloy	C-4 alloy	625 alloy
Sulfuric Acid	2	150 (66)	< 1	Nil	Nil	Nil
	2 5	Boiling	6	5	6	6
		174 (79)	1	<1	1	<1
	5	Boiling	12	9	16	16
	10	Boiling	19	12	25	37
	20	150 (66)	< 1	<1	<1	<1
	20	174 (79)	3	1	2	13
	20	Boiling	39	33	36	91
	30	150 (66)	1	<1	<1	<1
	30	174 (79)	4	3	3	27
	30	Boiling	55	64	73	227
	40	100 (38)	<1	<1	<1	<1
	40	150 (66)	1	<1	9	1
	40	174 (79)	10	9	15	35
	50	100 (38)	Nil	<1	<1	1
	50	150 (66)	4	1	13	25
	50	174 (79)	12	16	25	58
	60	100 (38)	<1	<1	1	<1
	70	100 (38)	Nil	Nil	2	<1
	80	100 (38)	<1	Nil	<1	<1
Sulfuric Acid + 0.1% HCl	5	Boiling	33	26	49	151
Sulfuric Acid + 0.5% HCl	5	Boiling	49	61	91	434
Sulfuric Acid + 1% HCl	10	158 (70)	11	<1	24	121
Sulfuric Acid + 1% HCl	10	194 (90)	45	94	66	326
Sulfuric Acid + 1% HCl	10	Boiling	116	225	192	869
Sulfuric Acid + 2% HF	10	Boiling	22	29	26	55
Sulfuric Acid + 200 ppm Cl–	25	158 (70)	12	11	37	110
Sulfuric Acid + 200 ppm Cl–	25	Boiling	186	215	182	325
Sulfuric Acid + 1.2% HCl + 1% FeCl ₃ + 1 <u>%</u> Cu Cl ₂	11.5	Boiling	42	3	837	1815
Sulfuric Acid + 1.2% HCl + 1% FeCl ₃ + 1% Cu Cl ₂ (ASTMG28B)	23	Boiling	55	8	2155	2721
Sulfuric Acid + 42 g/l Fe₂(SO₄)₃ (ASTMG28A)	50	Boiling	250	40	143	23

*To convert mils per year (mpy) to mm per year, divide by 40.

CREVICE-CORROSION DATA IN 10% FERRIC CHLORIDE AT ROOM TEMPERATURE FOR 10 DAYS

Alloy	Number of Attacked Crevices*	Maximum Depth of Penetration, mils**	
HASTELLOY [®] C-276 alloy	0	0	
HASTELLOY C-22 [®] alloy	0	0	
HAYNES [®] 625 alloy	11	3	
Type 317LM Stainless Steel	20	12	
Alloy No. 904L	23	19	
20Cb-3 [®] alloy	24	76	
Alloy 825	24	125	

*Maximum possible number of crevices was 24.

**To convert mils per year (mpy) to mm per year, divide by 40. 20Cb-3 is a trademark of Carpenter Technology Corporation.

COMPARATIVE CREVICE-CORROSION TEST DATA IN 10% FERRIC CHLORIDE

77°F (25°C)	Average Corrosion Rate, mils 122°F (50°C)	s per year* 167°F (75°C)
	0.0	1.4
0.2	0.2	283
0.1	0.1	0.5
03	0.5	20
Sec 1999	811	663
0.4		510
1.5	124	
205	380	700
	460	780
		680
	0.3 0.4 1.5 205 312 730	77°F (25°C) 122°F (50°C) 0.2 0.2 0.1 0.1 0.3 0.5 0.4 811 1.5 124 205 380 312 460

*Average corrosion rate on duplicate samples even though most corrosion occurred under crevice. Tests were for 100 hours with grooved block. To convert mils per year (mpy) to mm per year, divide by 40.

COMPARATIVE STRESS-CORROSION CRACKING DATA

Alloy	Time, hrs. to crack in 45% Magnesium Chloride at 309°F (154°C)
Type 304 Stainless Steel	1-2
Type 316L Stainless Steel	1-2
20Cb-3 alloy	22
Alloy 825	46
HAYNES 625 alloy	No cracks - 1000
HASTELLOY G-30 [®] alloy	No cracks - 1000
HASTELLOY C-276 alloy	No cracks - 1000
HASTELLOY C-22 alloy	No cracks - 1000

COMPARATIVE IMMERSION CRITICAL PITTING AND CRITICAL CREVICE-CORROSION TEMPERATURES IN OXIDIZING NaCI-HCI SOLUTION

The chemical composition of the solution used in this test is as follows: 4% NaCl + 0.1% Fe₂(SO₄)₃ + 0.021 M HCl. This solution contains 24,300 ppm chlorides and is acidic (pH2). In both pitting and crevice-

corrosion testing the solution temperature was varied in 5°C increments to determine the lowest temperature at which pitting-corrosion initiated (observed by examination at a magnification of 40X of duplicate samples) after a 24-hour exposure period (Pitting Temperature), and the lowest temperature at which crevicecorrosion initiated in a 100-hour exposure period (Crevice-Corrosion Temperature).

	Critical Pitting Temperature		Critical Crevice-Corrosion Temperature	
Alloy	°C	°F	°C	°F
HASTELLOY [®] C-22 [®] alloy	>150	>302	102	212 (Boiling)
HASTELLOY C-276 alloy	150	302	80	176
HASTELLOY C-4 alloy	140	284	50	122
HAYNES [®] 625 alloy	90	194	50	122
HASTELLOY G-30® alloy	70	158	40	104
FERRALIUM [®] 255 alloy	50	122	35	95
Alloy 904L	45	113	20	68
Type 317LM Stainless Steel	35	95	15	59
Type 317L Stainless Steel	25	77	10	50
Alloy 825	25	77	≤-5	≤23
20Cb-3 [®] alloy	20	68	≤-5	≤23
Type 316 Stainless Steel	20	68	≤-5	≤23

20Cb-3 is a trademark of Carpenter Technology Corporation.

COMPARATIVE IMMERSION CREVICE-CORROSION TEMPERATURES IN 6% FERRIC CHLORIDE SOLUTION (ASTM G48; MTI Project)

The chemical composition of the solution used in this test is as follows: $6\% \text{ Fe}_2\text{Cl}_3$. In the crevice-corrosion test, the

solution temperature was varied in 2.5°C increments to determine the lowest temperature at which crevice corrosion initiated in a 24-hour exposure period (Crevice-Corrosion Temperature).

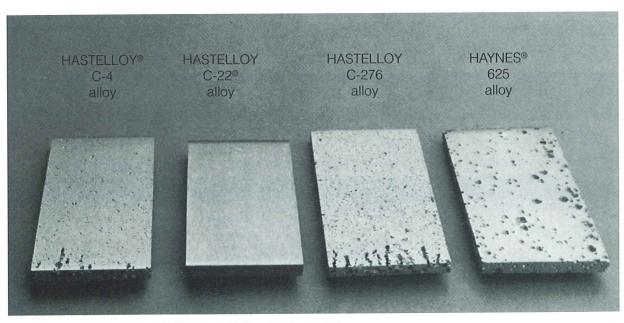
Crevice-Corrosion Temperature			
Alloy	°C	°F	
HASTELLOY C-22 alloy	> 100	> 212	
HASTELLOY C-276 alloy	95	203	
HASTELLOY C-4 alloy	42.5	109	
HAYNES 625 alloy	40	104	
HASTELLOY G-30 alloy	30	86	
Nickel 200	30	86	
FERRALIUM 255 alloy	45	113	
Alloy 904L	5	41	
Type 317 Stainless Steel	2.5	37	

COMPARATIVE CRITICAL PITTING TEMPERATURES IN OXIDIZING H₂SO₄-HCI SOLUTION

e de la casa

The chemical composition of the solution used in this test is as follows: 11.5% H₂SO₄ + 1.2% HCl + 1% FeCl₃ + 1% CuCl₂. This test environment is a severely oxidizing acid solution which is used to evaluate the

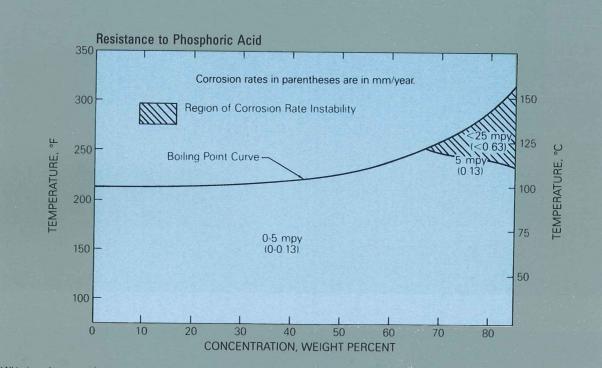
resistance of alloys to localized corrosion. It is considerably more aggressive than the oxidizing NaCI-HCI test. Experiments were performed in increments of solution temperature of 5 deg. C for a 24-hour exposure period to determine the critical pitting temperature, i.e. the lowest temperature at which pitting corrosion initiated (observed at a magnification of 40X of duplicate samples.)

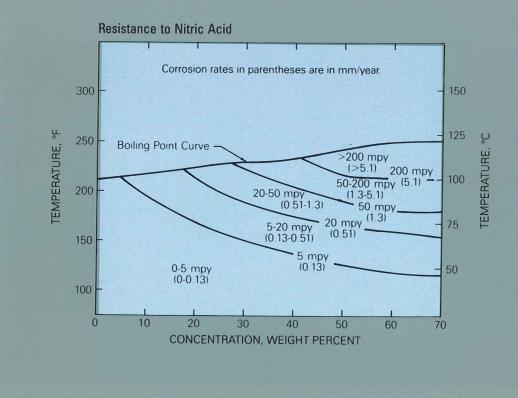

Alloy	Critical Pit °C	ting Temperature °F	
HASTELLOY® C-22® alloy	120	248	
HASTELLOY C-276 alloy	110	230	
HASTELLOY C-4 alloy	90	194	
HAYNES [®] 625 alloy	75	167	

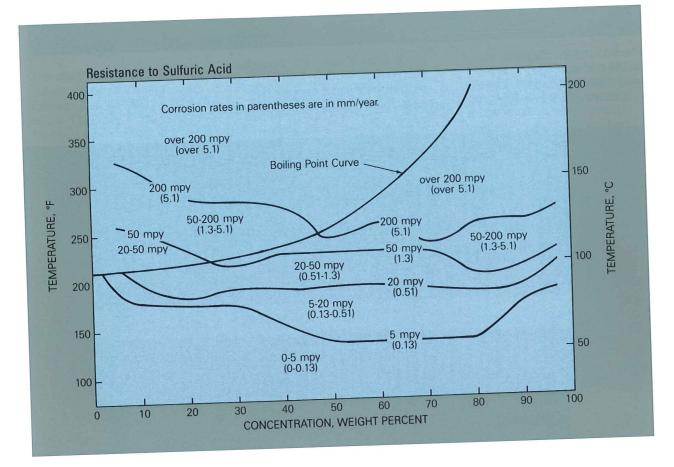
HASTELLOY ALLOYS EXCEL IN PITTING RESISTANCE

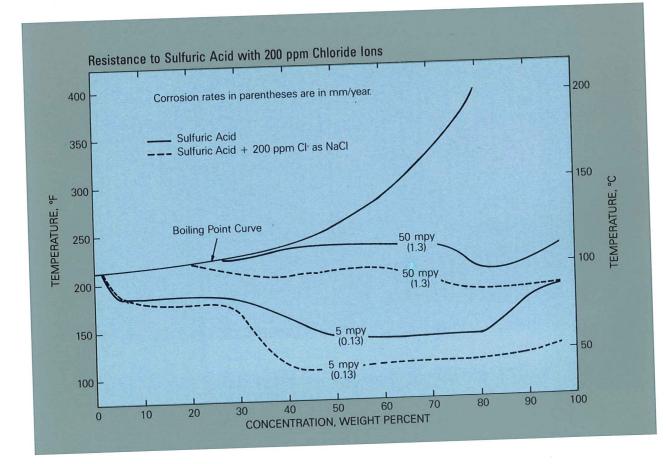
As a class, C-type alloys excel in pitting corrosion resistance.

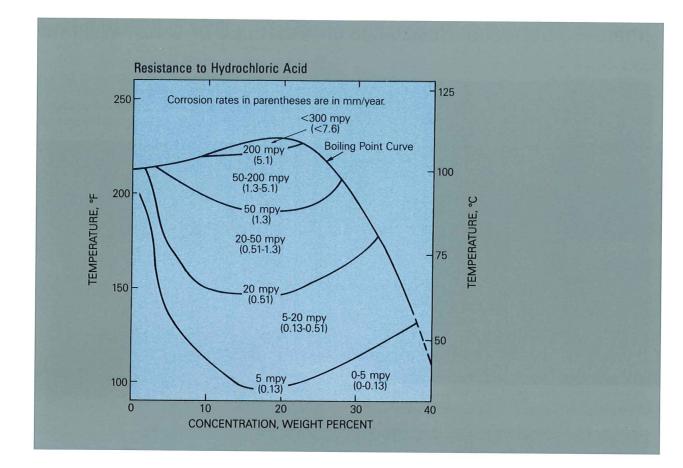
However, comparison tests in a severe pitting environment show

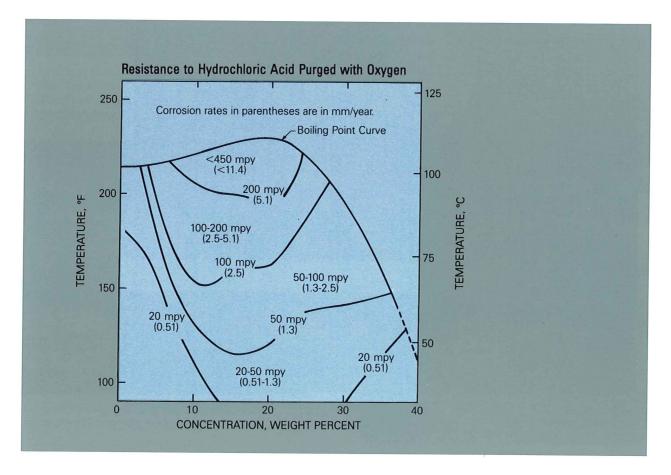

HASTELLOY C-22 alloy to be in a class by itself.

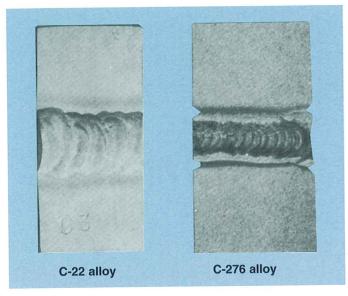

Samples were subjected to a solution of 11.5% $\rm H_2SO_4$ + 1.2% HCl + 1% FeCl_3 + 1% CuCl_2. Solutions for coupons 625 and C-4 were at 102°C, while C-276 and C-22 were at 125°C.

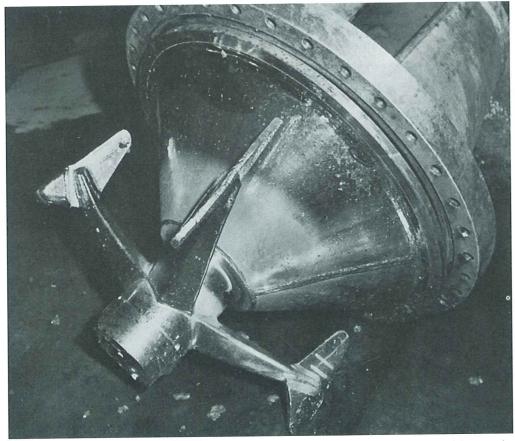

ISOCORROSION DIAGRAMS


The isocorrosion diagrams shown on this and subsequent pages were plotted using data obtained in laboratory tests in reagent grade acids. These data should be used only as a guide. It is recommended that samples be tested under actual plant conditions.




*All test specimens were heat-treated at 2050°F (1121°C), rapid quenched and in the unwelded condition.





HASTELLOY® C-276 alloy

Improved Corrosion Resistance of HASTELLOY® C-22® Weldments

Corrosion behavior of welded samples showing the improved performance of C-22 alloy over that of C-276 alloy.

Weld overlays of HASTELLOY C-22 alloy were used to protect C-276 alloy weldments in this bleach plant mixer.

STANDARD PRODUCTS

HASTELLOY [®] Family of Corrosion-Resistant Alloys			
B-3®, C-4, C-22®, C-276, C-2000®, C-22HS®, G-30®, G-35®, G-50®, HYBRID-BC1™, and N			
HASTELLOY Family of Heat-Resistant Alloys			
S, W, and X			
HAYNES [®] Family of Heat-Resistant Alloys			
25, R-41, 75, HR-120 [®] , HR-160 [®] , 188, 214 [®] , 230 [®] , 230-W [®] , 242 [®] , 263, 282 [®] , 556 [®] , 617, 625, 65SQ [®] , 718, X-750, MULTIMET [®] , NS-163 [™] , and Waspaloy			
Corrosion-Wear Resistant Alloy	Wear-Resistant Alloy		
ULTIMET®	6B		
HAYNES Titanium Alloy Tubular			
Ti-3Al-2.5V			
Standard Forms: Bar, Billet, Plate, Sheet, Strip, Coils, Seamless or Welded Pipe & Tubing,			

Pipe Fittings, Flanges, Fittings, Welding Wire, and Coated Electrodes

Properties Data: The data and information in this publication are based on work conducted principally by Haynes International, Inc. and occasionally supplemented by information from the open literature, and are believed to be reliable. However, Haynes does not make any warranty or assume any legal liability or responsibility for its accuracy, completeness, or usefulness, nor does Haynes represent that its use would not infringe upon private rights. Any suggestions as to uses and applications for specific alloys are opinions only and Haynes International, Inc. makes no warranty of results to be obtained in any particular situation. For specific concentrations of elements present in a particular product and a discussion of the potential health affects thereof, refer to the Material Safety Data Sheet supplied by Haynes International, Inc. All trademarks are owned by Haynes International, Inc.

Global Headquarters

1020 West Park Avenue P.O. Box 9013 Kokomo, Indiana 46904-9013 (USA) Phone: 1-800-354-0806 or (765) 456-6012 Fax: (765) 456-6905 www.haynesintl.com

050907

For your local sales office or service center, please call or visit our website.