

A nickel-base alloy with superior corrosion resistance to commercial phosphoric, sulfuric, nitric/hydrochloric, nitric/hydrofluoric acids and other complex environments containing highly oxidizing acids.

Contents

Principal Features	3
Chemical Composition	3
Typical Applications	4
Corrosion in Phosphoric Acid	5
Corrosion in Other Acids	6
Effect of Aging on Corrosion	7
Pitting Resistance	7
Isocorrosion Diagrams	8
Physical Properties	10
Hardness	11
Tensile Data	11
Fabrication	12
Welding	13
Machining	14
Availability	15

PRINCIPALFEATURES

Superior Corrosion Resistance to Commercial Phosphoric Acids and Oxidizing Acid Mixtures

HASTELLOY® G-30° alloy is a high chromium nickel-base alloy which shows superior corrosion resistance over most other nickeland iron-base alloys in commercial phosphoric acids as well as many complex environments containing highly oxidizing acids such as nitric/hydrochloric, nitric/hydrofluoric and sulfuric acids.

The resistance of G-30 alloy to the formation of grain boundary precipitates in the heat-affected zone makes it suitable for use in most chemical process applications in the as-welded condition.

Product Forms

HASTELLOY G-30 alloy is available in the form of plate, sheet, strip, billet, bar, wire, covered electrodes, pipe and tubing.

Some Typical Applications

- Phosphoric Acid Service
- Sulfuric Acid Service
- Nitric Acid Service
- Nuclear Fuel Reprocessing
- Nuclear Waste Processing
- Pickling Operations
- Petrochemicals
- Fertilizer Manufacture
- Pesticide Manufacture
- Gold Ore Extraction

Field Test Program

Samples of G-30 alloy are readily available for laboratory or inplant corrosion testing. Analysis of

corrosion resistance of the tested material can also be performed and the results provided to the customer as a free technical service. Try testing HASTELLOY G-30 alloy. Just contact any of the convenient locations shown on the back cover of this brochure.

ASME Boiler and Pressure Vessel Code

HASTELLOY G-30 alloy plate, sheet, strip, pipe, tubing and fittings are covered by ASME product specifications SB581, SB582, SB619, SB622, SB626 and SB366 under UNS number N06030.

CHEMICAL COMPOSITION, PERCENT*

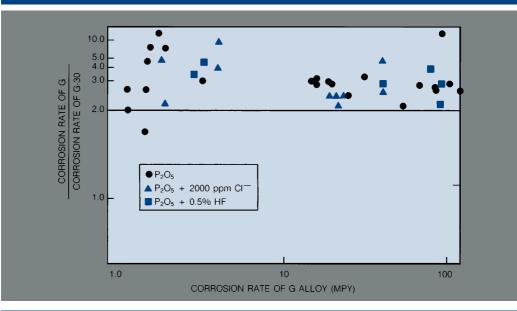
Ni ^a	Со	Cr	Мо	W	Fe	Si*	Mn	C*	Others
43	5.0**	28.0- 31.5	4.0- 6.0	1.5- 4.0	13.0- 17.0	0.8**	1.5**	0.03**	Cb + Ta = 0.3-1.5 Cu = 1.0-2.4 P = 0.04** S = 0.02**

*The undiluted deposited chemical composition of G-30 alloy covered electrodes has 0.04 percent carbon and 1.0 percent silicon.

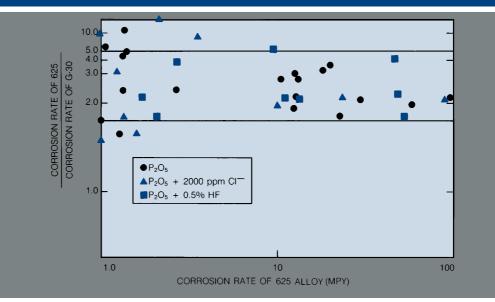
**Maximum.

TYPICAL APPLICATIONS

HASTELLOY[®] G-30[®] alloy has outstanding resistance to hydrofluoric/nitric acid mixtures such as employed in the pickling of stainless steel. This particular operation involves aerated, 15% HNO₃ and 5% HF at 140 deg. F. (60 deg. C)



HASTELLOY G-30 alloy exhibits excellent resistance to commercial phosphoric acid. Its use is growing in the fertilizer industry for acid evaporators.


COMPARATIVE CORROSION RESISTANCE IN COMMERCIAL PHOSPHORIC ACID

The comparative corrosion resistance of HASTELLOY G-30 and G alloys or 625 alloy in commercial phosphoric acid, is shown below. The corrosivity of commercial phosphoric acid is a function of several variables such as concentration, temperature, impurity levels and origin of the phosphate rock. Wide variations in corrosion rates are possible in acids of the same concentration but from different sources. Hence, corrosion tests were conducted in acids from a number of suppliers and the performance of G-30 alloy relative to HASTELLOY G alloy and 625 alloy is shown as a function of the corrosion rate of G alloy and 625 alloy respectively. In general, G-30 alloy performs 2-10 times better than G alloy or 625 alloy in acids of corrosivity corresponding to corrosion rates in the range of one to one hundred mils per year.

RATIO OF CORROSION RATES OF G ALLOY/G-30 ALLOY FOR VARIOUS CONDITIONS

RATIO OF CORROSION RATES OF 625 ALLOY/G-30 ALLOY FOR VARIOUS CONDITIONS

COMMERCIAL PHOSPHORIC ACID* CORROSION DATA

			Average Corrosion Rate per year, mils**			
Media	Temp.	, °F (°C)	G-30 [®] alloy	625 alloy	G-3 alloy	Sanicro 28
28% P_2O_5 + 2000 ppm C1 ⁻	185	(85)	1.0	1.5	0.9	31
42% P ₂ O ₅ + 2000 ppm C1 ⁻	185	(85)	0.9	1.3	11	121
44% P ₂ O ₅	241	(116)	7.0	23	22	_
44% P ₂ O ₅ + 2000 ppm C1 ⁻	241	(116)	7.7	25	22	_
44% P ₂ O ₅ + 0.5% HF	241	(116)	16	60	49	_
52% P ₂ O ₅	241	(116)	3.9	12	11	48
52% P ₂ O ₅	300	(149)	28	79	64	248
54% P ₂ O ₅	241	(116)	8	16	16	55
54% P ₂ O ₅ + 2000 ppm C1 ⁻	241	(116)	7	15	16	92

*Acid obtained from several plant sites. **To convert mils per year (mpy) to mm per year, divide by 40.

COMPARATIVE ACID CORROSION DATA

	Concen- tration,	Test Tomp	Average Corrosion Rate per year, mils			
Media	percent by weight	Test Temp., °F (°C)	G-30 alloy	G-3 alloy	625 allov	
		· · · · ·		,	5	
Acetic Acid	99	Boiling	1	0.6	<1	
Formic Acid	88	Boiling	2	5	9	
Nitric Acid	10	Boiling	0.4	0.9	1	
	60	Boiling	5.3	8.5	16	
	65	Boiling	5	11	20	
Nitric Acid + 1% HF	20	176 (80)	31	74	123	
Nitric Acid + 6% HF	20	176 (80)	177	540	2400	
Nitric Acid + 1% HF	50	176 (80)	192	420	—	
Nitric Acid + 0.5% HF	56	230 (110)	47	110	—	
Nitric Acid + 0.5% HF +	56	230 (110)	50	113	_	
2000 ppm Cl –						
Sulfuric Acid + 10% Nitric Acid	50	Boiling	16	30	—	
Sulfuric Acid	2	Boiling	8	6	6	
	10	Boiling	31	19	46, 25	
	20	Boiling	54	30	124, 91	
	50	225 (107)	37	37	223	
	80	125 (52)	12	23	33	
	99	266 (130)	43	74	—	
	99	284 (140)	46	57	_	
Sulfuric Acid + 42 g/l Fe ₂ (SO ₄) ₃ (ASTM	50 G28A)	Boiling	7	11	23,17	
Sulfuric Acid +	70	Boiling	133	240	—	
5% Nitric Acid Sulfuric Acid +	60	Boiling	45	84	105	
5% Nitric Acid	00	Dolling	40	04	105	
Sulfuric Acid + 8% Nitric Acid + 4% HF	77	129 (54)	0.4	1.5	—	
Nitric Acid + 8% HCl	18	176 (80)	2	18	6	
Nitric Acid + 11% HCl	25	176 (80)	23	914	126	
Nitric Acid + 3% HCI	59	176 (80)	5	34	20	

 $^{\star}\text{To}$ convert mils per year (mpy) to mm per year, divide by 40.

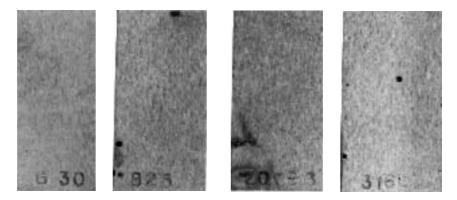
EFFECT OF AGING ON CORROSION RESISTANCE

Average Corrosior	n Rate in 20% HNO ₃	+ 6% HF at 176°F	(80°C) per year, mils*
-------------------	--------------------------------	------------------	------------------------

			Aging Time					
Aging Temp.,			1 Hour			10 Hours		
°F	(°C)	G alloy	G-3 alloy	G-30 [®] alloy	G alloy	G-3 alloy	G-30 alloy	
1200	(649)	860	438	223	3890	575	272	
1400	(760)	12000	860	230	19000	2660	1600	
1600	(871)	19000	2145	177	20000	4375	454	
1800	(982)	19000	577	338	19000	640	427	

Base line corrosion rates on annealed samples from the same heat are alloy G—1075, alloy G-3—634, alloy G-30—230. *To convert mils per year (mpy) to mm per year, divide by 40.

COMPARATIVE IMMERSION PITTING TEMPERATURES IN OXIDIZING ACIDIC CHLORIDE SOLUTION

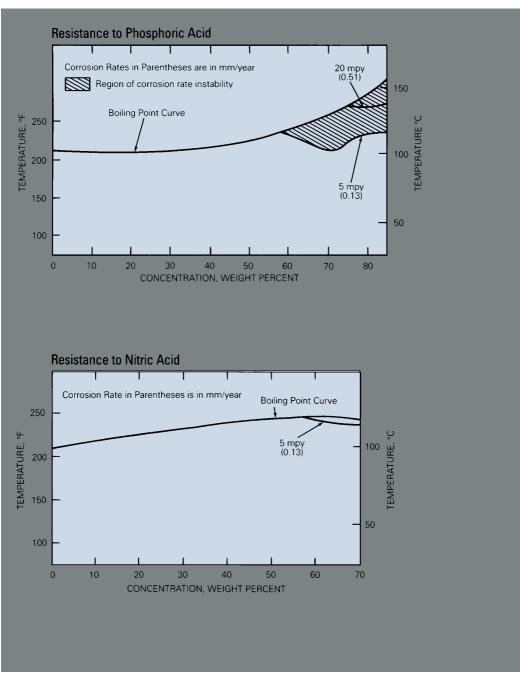

The chemical composition of the solution used in this test is as follows: 4% NaCl + 0.1% $Fe_2(SO_4)_3$ + 0.01 M HCl. This solution contains 24,300 ppm

chlorides and is acidic (pH2). The solution temperature was varied in 5°C increments to determine the lowest temperature at which pitting corrosion initiated (observed by examination at a magnification of 40X on duplicate samples) after a 24-hour exposure period (Critical Pitting Temperature).

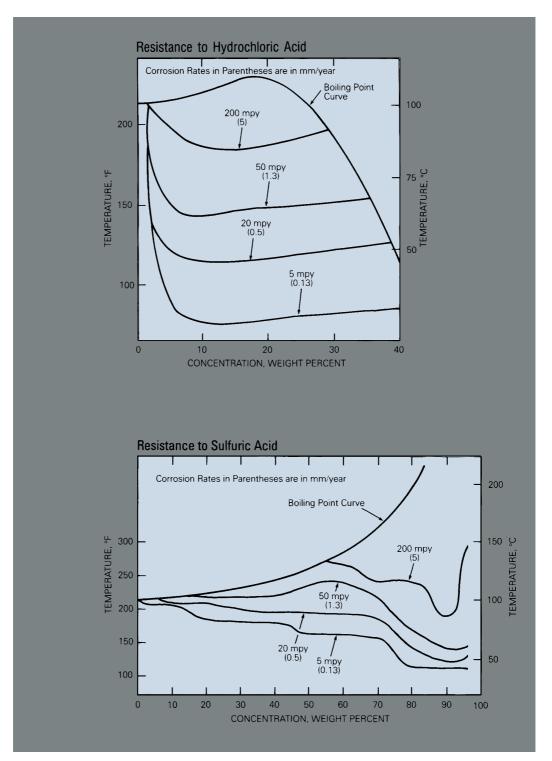
Critical Pitting Temperature,

Alloy	°C (°F)
HASTELLOY® G-30® alloy	70 (158)
HASTELLOY G-3 alloy	70 (158)
Alloy No. 904L	45 (113)
Type 317LM Stainless Steel	35 (95)
Type 317L Stainless Steel	25 (77)
Alloy 825	25 (77)
20 Cb-3* alloy	20 (68)
Type 316 Stainless Steel	20 (68)

*Trademark of Carpenter Technology Corporation.



All four of these alloys were immersed in 4% NaCl + 0.1% $Fe_2(SO_4)_3$ + 0.01M HCl at 122 deg. F (50°C) for 48 hours. HASTELLOY G-30 alloy was the only one not to pit.


ISOCORROSION DIAGRAMS*

The isocorrosion diagrams shown on this and subsequent pages were plotted using data

obtained in laboratory tests in reagent grade acids. These data should be used only as a guide. It is recommended that samples be tested under actual plant conditions.

*All test specimens were heat-treated at 2150°F (1177°C), rapid quenched and in the unwelded condition.

PHYSICAL PROPERTIES

	Temp., °F	British Units	Temp., °C	Metric Units	
Density 70 0.297 lb./in. ³		0.297 lb./in. ³	22	8.22 gm/cm ³	
Electrical	ical 75 45.7 microhm-in.		24	1.16 microhm-m	
Resistivity	212	46.1 microhm-in.	100	1.17 microhm-m	
	392	46.9 microhm-in.	200	1.19 microhm-m	
	572	47.6 microhm-in.	300	1.21 microhm-m	
	752	48.4 microhm-in.	400	1.23 microhm-m	
	932	48.8 microhm-in.	500	1.24 microhm-m	
	1112	49.2 microhm-in.	600	1.25 microhm-m	
Thermal	75	71 Btu-in./ft.2-hr°F	24	10.2 W/m·K	
Conductivity	212	83 Btu-in./ft. ² -hr°F	100	11.9 W/m·K	
	392	100 Btu-in./ft. ² -hr°F	200	14.4 W/m·K	
	572	116 Btu-in./ft. ² -hr°F	300	16.7 W/m·K	
	752	130 Btu-in./ft. ² -hr°F	400	18.7 W/m·K	
	932	141 Btu-in./ft. ² -hr°F	500	20.3 W/m·K	
	1112	149 Btu-in./ft. ² -hr°F	600	21.4 W/m·K	
Mean Coefficient	86-200	7.1 microinches/in°F	39-93	12.8 x 10- ⁶ m/m·K	
of Thermal	86-400	7.7 microinches/in°F	30-204	13.9 x 10- ⁶ m/m·K	
Expansion	86-600	8.0 microinches/in°F	30-316	14.4 x 10- ⁶ m/m·K	
	86-800	8.3 microinches/in°F	30-427	14.9 x 10- ⁶ m/m·K	
	86-1000	8.6 microinches/in°F	30-538	15.5 x 10- ⁶ m/m·K	
	86-1200	8.9 microinches/in°F	30-649	16.0 x 10- ⁶ m/m·K	
	86-1400	8.9 microinches/in°F	30-760	16.0 x 10- ⁶ m/m [.] K	

DYNAMIC MODULUS OF ELASTICITY (YOUNGS MODULUS)

Form	Condition	Test Temp., °F(°C)	Dynamic Modulus of Elasticity, 10 ⁶ psi (GPa)
Plate	Heat-treated to	75 (24)	29.3 (202)
	2150°F (1177°C),	400 (204)	28.4 (196)
	Rapid Quenched	600 (316)	28.2 (194)
		800 (427)	27.8 (192)
		1000 (538)	26.7 (184)

HARDNESS

% cold work	unaged	200 hr./392°F (200°C)	100 hr./932°F (500°C)
As Mill Annealed	Rb 90	_	_
10	Rb 98	Rb 100	Rb 93
20	Rc 29	Rc 26	Rc 25
30	Rc 32	Rc 34	Rc 34
40	Rc 35	Rc 38	Rc 40
50	Rc 36	Rc 39	Rc 41
60	Rc 40	Rc 43	Rc 44
70	Rc 41	Rc 43	Rc 46

ROOM TEMPERATURE TENSILE DATA*

Form	Ultimate Tensile Strength, Ksi**	Yield Strength at 0.2% offset, Ksi**	Elongation in 2 in. (50.8mm), percent	Reduction of Area, percent
Sheet, 0.028 in. (0.71mm) thick	100	47	56	_
Sheet, 0.125 in. (3.2mm) thick	100	51	56	_
Plate, 0.250 in. (6.4mm) thick	98	46	55	_
Plate, 0.375 in. (9.5mm) thick	100	45	65	68
Plate, 0.500 in. (12.7mm) thick	100	46	64	77
Plate, 0.750 in. (19.1mm) thick	98	47	65	67
Plate, 1.250 in. (31.8mm) thick	99	45	60	_
Bar, 1.0 in. (25.4mm) thick	100	46	60	_

 * Solution heat-treated at 2150°F (1177°C), rapid air cooled or water quenched. * * Ksi can be converted to MPa (megapascals) by multiplying by 6.895.

ELEVATED TEMPERATURE TENSILE DATA, PLATE AND BAR

Test Ter °F	np., (°C)	Ultimate Tensile Strength, Ksi*	Yield Strength at 0.2% offset, Ksi*	Elongation in 2 in. (50.8mm), percent
Room		103	49	53
200	(93)	95	42	54
400	(204)	88	36	59
600	(316)	83	33	59
800	(427)	80	31	60
1000	(538)	76	29	62

Average of tests obtained from up to 11 production lots (three heats and thicknesses ranging from 0.25 to 1.25 inches) *Ksi can be converted to MPa (megapascals) by multiplying by 6.895.

FABRICATION

Heat Treatment

Wrought forms of HASTELLOY® G-30® alloy are furnished in the solution heat-treated condition unless otherwise specified. The standard solution, heattreatment consists of heating to 2150°F (1177°C) followed by rapid air-cooling or water quenching. Parts which have been hot formed should be solution heat-treated prior to final fabrication or installation.

Forming

G-30 alloy has excellent forming characteristics and cold forming is the preferred

method of forming. Because of its good ductility, it can be easily cold-worked. The alloy is generally stiffer than the austenitic stainless steels. Therefore, more energy is required during cold forming. For further information, please consult publication H-2010.

ROOM TEMPERATURE TENSILE DATA, COLD-WORKED AND AGED PLATE

Condition	Ultimate Tensile Strength, Ksi*	Yield Strength at 0.2% offset, Ksi*	Elongation in 2 in. (50.8mm), percent	Reduction of Area, percent
Mill Annealed	100	46	64	77
10% cold rolled	116	88	38	62
30% cold rolled	159	145	12	57
50% cold rolled	173	158	12	50
50% cold rolled + 1 hr. at 932°F (500°C), air cool	180	161	12	45
50% cold rolled + 5000 hrs. at 932°F (500°C), air cool	192	168	8	14

*Ksi can be converted to MPa (megapascals) by multiplying by 6.895.

EFFECT OF COLD WORKING AND AGING ON ROOM TEMPERATURE IMPACT STRENGTH

	Charpy V-Notch Impact Strength
Condition	ftlb. J
Mill Annealed	260 353
50% cold rolled	31 42
50% cold rolled + 1 hr. at 932°F (500°C)	33 45
50% cold rolled + 500 hrs. at 932°F (500°C)	11 15

EFFECT OF AGING ON IMPACT STRENGTH OF 1/2 IN. PLATE

		Charpy V-Notch Impact Strength			
		Room Temperature –320°F (–19		(–196°C)	
Condition	Orientation	ftlb.	J	ftlb.	J
Mill Annealed	Longitudinal	260	353	261	354
Mill Annealed	Transverse	260	353	262	355
MA* + 1 hr. at 1400°F (760°C)	Longitudinal	200	271	_	_
MA + 24 hrs. at 1400°F (760°C)	Longitudinal	58	79	_	_
MA + 1 hr. at 1600°F (871°C)	Longitudinal	96	130	_	_
MA + 24 hrs. at 1600°F (871°C)	Longitudinal	2	3	_	_
MA + 1 hr. at 1800°F (982°C)	Longitudinal	48	65	_	_

*MA = Mill Annealed

WELDING

HASTELLOY® G-30® alloy is readily welded by Gas Tungsten-Arc (GTAW), Gas Metal-Arc (GMAW), and Shielded Metal-Arc (covered electrodes), welding techniques. Its welding characteristics are similar to those for HASTELLOY G-3 alloy. Submerged-Arc welding is not recommended as this process in characterized by high heat input to the base metal and slow cooling of the weld.

Base Metal Preparation

The joint surface and adjacent area should be thoroughly cleaned before welding. All grease, oil crayon marks, sulfur compounds and other foreign matter should be removed.

Filler Metal Selections

Matching composition filler metal is recommended for joining G-30 alloy. For gastungsten-arc and gas-metal-arc welding, HASTELLOY G-30 alloy filler wire (ERNiCrMo-11; UNS NO6030) is suggested. For shielded-metal-arc welding, G-30 alloy covered electrodes (ENiCrMo-11; UNS W86030) are suggested.

Detailed fabricating information for G-30 alloy is available in the booklet, "Fabrication of HAYNES-Corrosion-Resistant Alloys" (H-2010).

AVERAGE TRANSVERSE TENSILE DATA, WELDMENTS

Form	Weld Type	Test Temp., °F (°C)	Ultimate Tensile Strength Ksi*	Yield Strength at 0.2% offset, Ksi*	Elongation in 2 in. (50.8mm), pecent	Reduction of area, percent
Sheet,	GTAW	Room	98	48	39	
0.125 in.		1000 (538)	71	30	45	_
(3.2mm)		1400 (760)	55	27	34	_
thick						
Plate, 1/2 in.	GTAW	Room	103	57	60	70(a)
(12.7mm)	1/8 in.	1000 (538)	71	32	56	60(a)
thick	(3.2mm) dia.	1400 (760)	54	32	33	25(b)
	filler wire					
Plate, ¹ /2 in.	GTAW	Room	101	53	55	62(a)
(12.7mm)	(short arc)	1000 (538)	73	33	59	32-64 (a,c)
thick	0.045 in. (1.1mm) dia. filler wire	1400 (760)	54	29	27	15-26 (a,b,c)
Plate, ¹ /2 in.	GMAW (spray)	Room	101	55	51	54(b)
(12.7mm)	0.045 in.	1000 (538)	71	36	49	49(b)
thick	(1.1mm) dia. filler wire	1400 (760)	55	30	34	29(a)

(a)—Fracture in base metal (b)—Fracture in weld metal (c)—Fracture in heat-affected zone *Ksi can be converted to MPa (megapascals) by multiplying by 6.895.

AVERAGE TENSILE DATA, ALL-WELD METAL

Weld Type	Test Temp., °F (°C)	Ultimate Tensile Strength Ksi*	Yield Strength at 0.2% offset, Ksi*	Elongation in 2 in. (50.8mm), pecent	Reduction of area, percent
GTAW	Room	102	68	36	43
¹ /8 in. (3.2mm)	500 (260)	82	52	34	41
dia. filler wire	1000 (538)	72	48	37	40
GMAW	Room	104	67	43	40
0.045 in.	500 (260)	83	50	40	36
(1.1mm) dia. filler wire	1000 (538)	74	47	44	39

*Ksi can be converted to MPa (megapascals) by multiplying by 6.895.

AVERAGE IMPACT AND BEND TEST DATA, WELDMENTS

Charpy V-Notch Impact Strength							
Weld	Room Temperature		-320°F (-196°C)		Bend Tests,	Bend Tests, *	
Process	ftlb.	J	ftlb.	J	2-T	1.5T	
GTAW 1/8 in. (3.2mm) dia. wire	106	144	74	100	Passed	Passed	
GMAW (short arc) 0.045 in. (1.1mm) dia. wire	103	140	77	104	Passed	Passed	
GMAW (spray) 0.045 in. (1.1mm) dia. wire	99	134	70	95	Passed	Passed	

 $^{\ast}2$ side bends, 1 face bend, 1 root bend. Bend angle 180°

MACHINING

The following are guidelines for performing typical machining operations upon G-30[®] alloy wrought stock. Exact details for

specific machining jobs will vary with circumstances of the particular job. Other tool materials not listed here may be suitable for machining G-30 alloy under various conditions. For further information, please consult publication H-2010.

Operation	High Speed Steel Tools	Carbide Tools	
Normal Roughing (Turning/Facing)	M-40 series, M-2, M-33, T-4, T-8 and T-15. 45° SCEA [*] , 0° Back Rake + 10° Side Rake, 1/16" nose radius 1/4" depth of cut max., 0.020 feed max. 25 sfm cutting speed Water-base coolant"	C-1 or C-2 grade square insert, 45° SCEA, -5° Back Rake, -5° Side Rake, 1/16" Nose Radius 1/4" depth of cut max., 0.020 feed max., 60-80 sfm depending on rigidity of setup. Dry°, oil ^a , or water-base coolant°	
Finishing (Turning/Facing)	M-40 series, M-33, M-3, T-8 and T- 15 15-45° SCEA, + 10° Back Rake, + 15° Side Rake, 1/32-1/16" nose radius, 0.040-0.010" depth of cut, 0.005-0.010" feed, 30-45 sfm Water-base coolant	C-2 or C-3 grade square insert, if possible 15-45° SCEA, + 5° Side Rake', + 5° Back Rake, 1/32-1/16" nose radius 0.040-0.010" depth of cut, 0.005-0.010" feed, 90-175 sfm Dry or water-base coolant°	
Drilling	M-33, M-40 series, or T-15 Feed 0.001"/Rev. 1/16" dia. 0.002"/Rev. 1/4" dia. 0.003"/Rev. 1/2" dia. 0.004"/Rev. 1" dia. Speed 10-20 sfm Oil or water coolant Use coolant feed drills if possible Use short drills, heavy web 135° crankshaft grind points wherever possible.	 C-2 grade not recommended, but solid or tipped drills may be successful on rigid setups. The web must be thinned to reduce thrust. Use 135° included angle on point. 30-60 sfm Coolant-feed carbide tipped drills be economical in some setups. Oil- or water-base coolant. 	

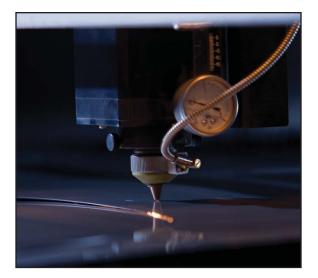
NOTES: a SCEA - Side cutting edge angle or lead angle of the tool

b Water base coolant should be premium quality, sulfochlorinated water soluble oil or chemical emulsion with extreme pressure additives. Dilute with water to make 15:1 mix. with extreme pressure additives. A viscosity at 100°F from 50 to 125 SSU. e Water base coolant may cause chipping and rapid failure of

 At any point where dry cutting is recommended, an air jet directed on the tool may provide substantial tool life increases.
 A water-base coolant mist may also be effective. carbide tools in interrupted cuts.

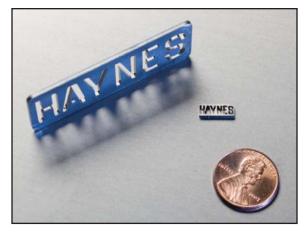

d Oil coolant should be a premium quality, sulfochlorinated oil

f Negative rake tools should be used for interrupted cuts.


SERVICE CENTER INFORMATION

Service and Availability are Standard at Haynes International.

Our global service centers stock millions of pounds of high-performance corrosion-resistant and high-temperature alloys. Whether you need on-demand delivery of finished goods, end-use technical support or a partner with global presence, Haynes International provides value far beyond the alloys themselves.


Corrosion-resistant and high-temperature alloy plate is stocked in several of our global service centers and ready for immediate delivery.

Our state-of-the art laser is one of many of our specialized equipment that provides precision detail.

Our LaserQC[®] equipment accurately maps out parts for duplication.

Value-added services such as near-net shaped and laser-cut parts can be cut in various sizes to specific drawings and specifications to reduce your labor time and material waste.

STANDARD PRODUCTS

HASTELLOY [®] Family of Corrosion-Resistant Alloys				
B-3 [®] , C-4, C-22 [®] , C-276, C-2000 [®] , C-22HS [®] , G-30 [®]	⁰ , G-35 [®] , G-50 [®] , HYBRID-BC1 [™] , and N			
HASTELLOY Family of Heat-Resistant All	oys			
S, W, and X				
HAYNES [®] Family of Heat-Resistant Alloys				
25, R-41, 75, HR-120 [®] , HR-160 [®] , 188, 214 [®] , 230 [®] , 230-W [®] , 242 [®] , 263, 282 [®] , 556 [®] , 617, 625, 65SQ [®] , 718, X-750, MULTIMET [®] , NS-163 [™] , and Waspaloy				
Corrosion-Wear Resistant Alloy	Wear-Resistant Alloy			
ULTIMET [®] 6B				
HAYNES Titanium Alloy Tubular				
Ti-3AI-2.5V				
Standard Forms: Bar, Billet, Plate, Sheet, Strip, Coils, Seamless or Welded Pipe & Tubing,				

Pipe Fittings, Flanges, Fittings, Welding Wire, and Coated Electrodes

Properties Data: The data and information in this publication are based on work conducted principally by Haynes International, Inc. and occasionally supplemented by information from the open literature, and are believed to be reliable. However, Haynes does not make any warranty or assume any legal liability or responsibility for its accuracy, completeness, or usefulness, nor does Haynes represent that its use would not infringe upon private rights. Any suggestions as to uses and applications for specific alloys are opinions only and Haynes International, Inc. makes no warranty of results to be obtained in any particular situation. For specific concentrations of elements present in a particular product and a discussion of the potential health affects thereof, refer to the Material Safety Data Sheet supplied by Haynes International, Inc. All trademarks are owned by Haynes International, Inc.

Global Headquarters

1020 West Park Avenue P.O. Box 9013 Kokomo, Indiana 46904-9013 (USA) Phone: 1-800-354-0806 or (765) 456-6012 Fax: (765) 456-6905 www.haynesintl.com

050907

For your local sales office or service center, please call or visit our website.