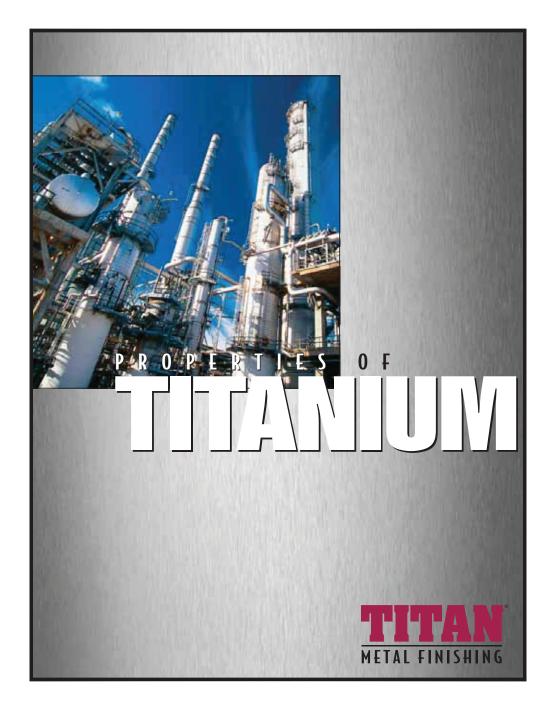
ATOMIC AND CRYSTALLOGRAPHIC

Atomic Number	22		
Atomic Weight	47.90		
Atomic Volume	10.64 cm ³ / mol		
Lattice Type	Body Center Cubic		
MASS	METRIC	E N G L I S H	
Density at 20°C	4.51 g/cm ³ 0.163 lb/in		
THERMAL			
Melting Point	1660°C	3320°F	
Boiling Point	3285°C 5945°F		
Specific Heat at 0°C ñ 100 C	.540 J/g/°C .129 BTU/lb/°F		
Average Linear Coefficient of	8.64 × 10 ⁻⁶ cm/cm/°C	4.8 × 10 ⁻⁶ in/in/°F	

THERMAL CONDUCTIVITY

20°C (68°F)

219 W/cm K 12.6 BTU/hr-ft°F


MECHANICAL PROPERTIES OF TITANIUM GRADES 2, 7, 16, 26

Tensile Strength (Minimum)	345 Mpa	50,000 PSI
Yield Strength (Minimum)	276 Mpa	40,000 PSI
Modulus of Elasticity (Tension)	103 Gpa	15,000,000 PSI
Nominal Hardness	82 Hrb	

352 BALBOA CIRCLE • CAMARILLO, CALIFORNIA • PHONE 805.487.5050 • FAX 805.487.5047 • WWW.TITANMETALFINISHING.COM

APPLICATIONS OF TITANIUM

TITANIUM AS A METAL

Many Titanium alloys have been developed for aerospace applications where mechanical properties are the primary consideration. The main issue with industrial applications is typically corrosion resistance.

Commercially pure industrial grades of titanium are listed by ASTM grade in Table 1. Titanium Grade 2 represents the vast majority of the titanium used for industrial applications where corrosion resistance is the main concern.

The corrosion resistance of titanium is due to a stable, protective, strongly adherent oxide film layer. This film forms instantly when a fresh surface is exposed to air or moisture. A 12-16 angstroms thick oxide film is immediately formed on clean titanium when it is exposed to air. It continues to grow slowly, reaching 50 angstroms after 70 days, and 80-90 angstroms after 545 days. The film growth is accelerated under strong oxidizing conditions. The oxide film is very stable and is only attacked by a few substances—most notably, hydrofluoric acid. The titanium oxide film is capable of healing itself instantly in the presence of moisture or oxyeen.

Anhydrous conditions should be avoided since the protective film may not be regenerated in the absence of oxygen.

TABLE 1				
ASTM GRADE	UNS DESIGNATION	NOMINAL COMPOSITION	YIELD STRENGTH, PSI	
1	R50250	Commercially Pure	25,000	
2	R50400	Commercially Pure	40,000	
3	R50550	Commercially Pure	55,000	
4	R50700	Commercially Pure	70,000	

Several titanium alloys have been developed with small amounts of palladium or ruthenium which have significance in industrial applications. Even though titanium has excellent corrosion resistance to a wide variety of corrosive media, it is limited in very hot brine and under acidic or reducing conditions as occur in crevices. The addition of palladium or ruthenium improves the corrosion resistance of the alloy under these conditions and extends the service temperatures in sea water and brine service. The presence of a small amount of these noble metals does not change the mechanical properties of the titanium. Palladium- and ruthenium-stabilized industrial grades of titanium are represented by the following ASTM grades in Table 2.

TABLE 2			
ASTM GRADE	UNS DESIGNATION	NOMINAL COMPOSITION	
7	R52400	Grade 2 + .15% Pd	
11	R52250	Grade 1 + .15% Pd	
16	R52402	Grade 2 + .05% Pd	
17	R52252	Grade 1 + .05% Pd	
26	R52404	Grade 2 + .10% Ru	
27	R52254	Grade 1 + .10% Ru	

The availability of lean palladium and ruthenium grades of titanium is still low, but with ASME code approval and increasing potential applications, the supply will increase to meet demand.

INDUSTRIAL APPLICATIONS

Titanium has found its niche in many industrial applications where corrosion resistance is required. Below we have listed some of the common applications of titanium in corrosion resistant service:

- Chlorine Chemicals
 Sea Water
- Hydrochloric Acid
 Sulfuric Acid
- Phosphoric Acid
 Nitric Acid

CHLORINE CHEMICALS

The corrosion resistance of titanium in chlorine gas and chlorine containing solutions is the basis for a large amount of titanium installations.

Titanium is widely used in chloro-alkali cells as anodes, cathodes, bleaching equipment for pulp and paper, heat exchangers, piping, vessels, and pumps for the manufacture of other intermediate organic chemicals. See Table 3 for the corrosion resistance of unalloyed titanium in aerated chloride solutions.

TABLE 3				
MEDIA	CONCENTRATION (%)	TEMPERATURE (°F)	CORROSION RATE (mpy	
-	5 - 10	140	.12	
	10	212	.09	
	10	302	1.3	
Aluminum Chloride	20	300	630	
	25	68	.04	
	25	212	258	
	40	250	4300	
Ammonium Chloride	All	68 - 212	< 0.5	
Barium Chloride	5 - 25	212	< 0.01	
	5	212	.02	
	10	212	0.3	
	20	212	0.6	
Calcium Chloride	55	220	.02	
	60	300	< 0.01	
-	62	310	2 - 16	
	73	350	84	
Cupric Chloride -	1 - 20	212	< 0.5	
Supric Gilloride	40	Boiling	0.2	
Cuprous Chloride	1 - 20	212	< 0.5	
	1 - 20	70	Nil	
- Ferric Chloride -	1 - 40	Boiling	< 0.5	
Ferric Gilloride	50	Boiling	.16	
	50	302	< 0.7	
Lithium Chloride	50	300	Nil	
	5	212	.03	
Magnesium Chloride	20	212	0.4	
2	50	390	0.2	
Manganous Chloride	5 - 20	212	Nil	
	1	212	.01	
- Mercuric Chloride	5	212	.42	
mercuric chioride -	10	212	.04	
	55	215	Nil	
Nickel Chloride	5 - 20	212	0.14	
	Saturated	70	Nil	
Potassium Chloride –	Saturated	140	< 0.01	

TABLE 3 (CONTINUED)

MEDIA	CONCENTRATION (%)	TEMPERATURE (*F)	CORROSION RATE (mpy)
Stannous Chloride	Saturated	70	Nil
	3	Boiling	.01
Sodium Chloride	29	230	.01
- Sodium Chioride	Saturated	70	Nil
	Saturated	Boiling	Nil
- Zinc Chloride -	20	220	Nil
	50	302	Nil
	75	392	24
	80	392	8000

FRESH AND SEA WATER

Titanium resists all forms of corrosive attack in fresh and sea water to temperatures of 500° F (260°C). Titanium tubing has been used in surface condensers successfully for more than 15 years in polluted sea water with no sign of corrosion. Titanium has provided over thirty years of trouble-free sea water service for the chemical, oil refining and desalination industries.

NITRIC ACID

Titanium is resistant to highly oxidizing acids over a wide range of temperatures and concentrations. Titanium has been extensively used in the handling and production of nitric acid. Titanium offers excellent resistance over a full concentration range at temperatures below boiling. Table 4 shows titanium's resistance to nitric acid vapors produced by boiling 70% azeotrope.

TABLE 4				
ASTM DESIGNATION	CORROSION RATE (mpy)			
Titanium Grade 2	2.0			
Titanium Grade 12	0.8			
Titanium Grade 7	.08			

RED FUMING NITRIC ACID

Although titanium has an excellent corrosion resistance to nitric acid over a wide range of temperatures and concentrations, it should not be used in applications with red fuming nitric acid. A dangerous pyrophoric reaction product can be produced.

PHOSPHORIC ACID

Unalloyed titanium is resistant to phosphoric acid up to 30% concentration at room temperature. The resistance extends to about 10% pure acid at 140°F. Table 5 shows unalloyed titanium's resistance to phosphoric acid.

	TABLE 5			
MEDIA	CONCENTRATION (%)	TEMPERATURE (*C)	CORROSION RATE (mpy)	
	2	100	5	
Phosphoric Acid	10	50	5	
Thosphoric Acid	20	30	5	
-	30	20	5	

HYDROCHLORIC ACID

Titanium has useful corrosion resistance in dilute hydrochloric acid applications. Small amounts of multivalent metal ions in solution can effectively inhibit corrosion.

TABLE 6				
HCL CONCENTRATION (%)	FeCl3 ADDED	TEMP. (° F)	TITANIUM GRADE 2	TITANIUM GRADE 7
1		Room	Nil	0.1
2		Room	Nil	0.2
3		Room	0.5	0.4
5		Room	0.2	0.6
8		Room	0.2	0.1
1		Boiling	85	0.8
2		Boiling	280	1.8
3		Boiling	550	2.7
5		Boiling	840	10
8		Boiling	>2000	24.0
3	2 g/l	200	0.2	0.1
4	2 g/l	200	0.4	0.3

SULFURIC ACID

Titanium is corrosion resistant to sulfuric acid only at low temperatures and concentrations such as 20% acid at 32° F and 5% acid at room temperature. Like hydrochloric acid, small amounts of multivalent metal ions in solution can effectively inhibit corrosion as illustrated in Table 7.

TABLE 7				
H2SO4 CONCENTRATION (%)	INHIBITOR ADDED	TEMP. (°F)	TITANIUM GRADE 2	
20	None	210	>2400	
20	2.5 g/l Copper Sulfate	210	<2	
20	16 g/l Ferric Ion	Boiling	5	

ORGANIC ACIDS

Unalloyed titanium generally has good resistance to many organic acids such as those shown in Table 8.

TABLE 8				
MEDIA	CONCENTRATION (%)	TEMPERATURE (* C)	CORROSION RATE (mpy	
Acetic Acid	5/25/75/99.5	100	Nil	
Citric Acid	50	100	<.01	
Citric (Aerated)	50	100	<5	
Citric (Nonaerated)	50	Boiling	14	
Formic (Aerated)	10/25/50/90	100	<5	
Formic (Nonaerated)	10/25/50/90	Boiling	>50	
	10	60	.12	
Lactic Acid	10	100	1.88	
	85	100	.33	
	10	Boiling	.55	
Lactic (Nonaerated)	25	Boiling	1.09	
	85	Boiling	.40	
	1	35	5.96	
Oxalic Acid	1	60	177	
-	25	100	1945	
Stearic Acid	100	182	<5	
Tartaric Acid	50	100	0.2	
Tannic Acid	25	100	Nil	

Information courtesy of Titanium Metals Corp. & RTI International Metals, Inc.